

产品概述

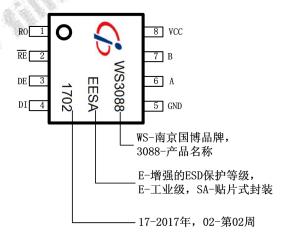
WS3088 是 3.3V/5V、半双工、±15kV(HBM) ESD 保护的 RS-485/RS-422 收 发器电路,电路内部包含一路驱动器和一路接收器,最高实现 10Mbps 的无误码 数据传输。

WS3088 芯片接收器输入阻抗为 1/8 单位负载,允许多达 256 个收发器挂接在总线上,实现半双工通信。所有驱动器输出提供±15kV 人体模式 ESD 保护,采用 8 脚 SO 封装,工作于-40℃至+125℃温度范围。

产品特性

- 3.3V/5V 电源电压
- 最高实现 10Mbps 的高速无误码数 据传输
- 通信端口提供±15kV 人体模式 ESD 保护
- Fail-safe 功能
- 具有 1/8 单位负载,多达 256 个收 发器可挂接在同一总线上
- 采用 8 脚 SO 封装

典型应用


- 隔离型 RS-485 接口
- 电表
- 工业控制
- 工业电机驱动
- 自动 HVAC 系统

极限参数

(所有电压参考点为地)

供电电压······ +7V
DE, \overline{RE} , DI
A, B9V to +14V
8管脚SO (-5.9mW/° C+70° 以上) ······ 471mW
工作温度范围 ······40° C to +125° C
结温·····+150° C
存储温度范围······65° C to +150° C
焊锡温度 (10秒)+300° C

封装说明

直流特性

(VCC = +5V ± 5%, 环境温度为 +25°C.)

参数	符号	条件	最小	典型	最大	单位
驱动器						ı
差分驱动输出(无负载)	VOD1	图 1		5		伏
差分驱动输出	VOD2	图 1, R=50Ω (RS-422)	2			伏
左刀 把列相田	V0D2	图 1, R=27Ω (RS-485)	1.5	35		1/1
差分输出幅值变化(注 1)	$\Delta^{ m V}_{ m OD}$	图 1, R =50ΩorR=27Ω			0.2	伏
驱动器输出共模电平	VOC	图 1, R=50 Ω orR=27 Ω	1		3	伏
驱动器输出共模电平变化	ΔVOC	图 1, R=50 Ω orR=27 Ω		100	0. 2	伏
输入高电平	V _{IH1}	DE, DI, \overline{RE}	2. 0			伏
输入低电平	VIL1	DE, DI, \overline{RE}		100	0.8	伏
输入迟滞	VHYS	DE, DI, \overline{RE}		100	19 m	毫优
输入电流	I _{IN1}	DE, DI, \overline{RE} (注 2)	ji A. 188		±2	微安
输入电流 (A 与 B)	IIN4	DE = GND, VCC=GNDor5. 25V VIN=-7V	-75	Ď.	125	微岁
		-7V≤V _{OUT} ≤V _{CC}	-100			毫安
驱动器输出短路电流	IOD1	0V≤V _{OUT} ≤12V			100	毫安
	District.	ov≤v _{OUT} ≤v _{CC}	±25			毫安
接收器	BAC.					
接收器差分输入阈值电压	VTH	-7V≤VCM≤+12V	-200		-50	毫优
接收器差分输入阈值电压 迟滞	ΔVTH			40		毫伊
接收器输出高电平	VOH	IO=-4mA, VID=1V	4			伏
接收器输出低电平	VOL	IO=4mA, VID=-1V			0. 4	伏

接收器输出高阻态漏电流	IOZR	0. 4V≤V0≤2			±1	微安	
接收器输入阻抗	RIN	-7V≤V _{CM} ≤+	96			千欧 姆	
接收器输出短路电流	Iosr	ov≤v _{R0} ≤v	±7		±95	毫安	
供电电流				A			
+4-1-11-1-1-32-	-	No load,	DE=VCC	j.A.	370	600	dit .) .
静态供电电流 	ICC	$\overline{RE} = DI = GND$ orVcc	DE=GND	4	370	600	微安
关断电流	ISHDN	$DE = GND, \overline{RE} =$	=Vec	100	1.8	10	微安
静态保护特性			A	1	ls.		•
		接触放电模	型	±12	TO No.		
静电保护(A管脚,B管脚)		IEC 61000-4	<u> 1</u> 12	The same		千伏	
		人体模型		±15			
静电保护(其他管脚)		人体模型	±4		000	千伏	

注 1: ΔVOD 和 ΔVOC是当DI改变时 VOD 和VOC的各自变化量。

注 2: 所有流入器件的电流为正,流出器件的电流为负;如无特殊说明,所有电压以地为参考点。

(VCC = +3.3V ± 5%, 环境温度为 +25°C.)

参数	符号	条件	最小	典型	最大	单位
驱动器				1		•
差分驱动输出(无负载)	VOD1	图 1		3.3		伏
差分驱动输出	V _{OD2}	图 1, R=50Ω (RS-422)	1.8			伏
左刀狐勾制山	VOD2	图 1, R=27Ω (RS-485)	1.2			1/
差分输出幅值变化(注1)	ΔV _{OD}	图 1, R =50ΩorR=27Ω			0.2	伏
驱动器输出共模电平	Voc	图 1, R=50 Ω orR=27 Ω			2	伏
驱动器输出共模电平变化	ΔV _{OC}	图 1, R=50ΩorR=27Ω			0. 2	伏
输入高电平	V _{IH1}	DE, DI, \overline{RE}	2.0			伏
输入低电平	VIL1	DE, DI, \overline{RE}			0.8	伏
输入迟滞	VHYS	DE, DI, \overline{RE}		100		毫伏

输入电流	IIN1	DE, DI, $\overline{\textit{RE}}$ (注 2)				±2	微安
炒入由次/A ⊢ p)	TINA	DE = GND,	V _{IN} =7V			70	/ш. г . г. г.
输入电流 (A 与 B)	IIN4	VCC=GNDor5. 25V	V _{IN} =-7V	-75			微安
		-7V≤V _{OUT} ≤V _O	CC	-100			毫安
驱动器输出短路电流	IOD1	0 V ≤ V OUT ≤ 8,	V		4	100	毫安
		0V≪V _{OUT} ≪V _C	CC	±25			毫安
接收器			d	8	b.		
接收器差分输入阈值电压	VTH	-7V≤VCM≤+7	-200	The same of	-50	毫伏	
接收器差分输入阈值电压迟滞	ΔVTH			60	h.	毫伏	
接收器输出高电平	VOH	IO=-4mA, VID=	1V	Vcc-1.5	Δ.		伏
接收器输出低电平	VOL	IO=4mA, VID=-	1V	The same	,///	0. 4	伏
接收器输出高阻态漏电流	IOZR	0. 4√≤√0≤2.	4V			±1	微安
接收器输入阻抗	RIN	-7V≤VCM≤+7	-7V≤VCM≤+7V				千欧 姆
接收器输出短路电流	IOSR	0V≤VR0≤VC0	±7	ē.	±95	毫安	
供电电流			, (C)		,		
静态供电电流	ICC	No load,	DE=VCC		370	600	沙
护 念供电电流	100	$\overline{RE} = DI = GND$ orVcc	DE=GND		370	600	微安
关断电流	ISHDN	$DE = GND, \overline{RE} = 0$		1.8	10	微安	

注 1: ΔVOD 和 ΔVOC是当DI改变时 VOD 和VOC的各自变化量。

注 2: 所有流入器件的电流为正,流出器件的电流为负;如无特殊说明,所有电压以地为参考点。

开关特性

(VCC = 3.3/5V ± 5%, 环境温度为 +25°C.)

参数	符号	条件	最小	典型	最大	单位
ᅏᆉᄜᄷᄼᄼᄼᄼᆡᅜᄼᄓᄺᆎ	tDPLH	图 3 和 5, RDIFF=54 欧姆,		20	50	Att FA
驱动器输入输出延时	tDPHL	CL=54pF		20	50	纳秒
驱动器输入输出延时之差	tDSKEW	图 3 和 5, RDIFF=54 欧姆, CL1=CL2=100pF		-3	±100	纳秒
驱动器上升、下降时间	tDR, tDF	图 3 和 5, RDIFF=54 欧姆, CL1=CL2=100pF	A	30	100	纳秒
最大速率	fmax			10000		kbps
驱动器使能到输出为高电平	tDZH	图 4 和 6, CL=100pF, S2 关断		30	80	纳秒
驱动器使能到输出为低电平	tDZL	图 4 和 6, CL=100pF, S1 关断		30	80	纳秒
驱动器从输出低到关断时间	tDLZ	图 4 和 6, CL=15pF, S1 关断		30	80	纳秒
驱动器从输出高到关断时间	tDHZ	图 4 和 6, CL=15pF, S2 关断		30	80	纳秒
接收器输入输出延时	tRPLH tRPHL	图7和9; V _{ID} ≥2.0V; V _{ID} 上 升下降时间小于15纳秒		120	200	纳秒
tRPLH - tRPHL 接收器 输入输出延时之差	tRSKD	图7和9; VID ≥2.0V; VID上 升下降时间小于15纳秒		10	±50	纳秒
接收器使能到输出低	tRZL	图 2 和 8, CL= 100pF, S1 关断		20	80	纳秒
接收器使能到输出高	tRZH	图 2 和 8, CL=100pF, S2 关断	A. 1	20	80	纳秒
接收器从输出高到关断	tRHZ	图 2 和 8, CL=100pF, S1 关断	415,7	20	80	纳秒
接收器从输出低到关断	tRLZ	图 2 和 8, CL=100pF, S2 关断	% T	20	80	纳秒
芯片关断时间	tSHDN	(注 3)	50	200	600	纳秒
从芯片关断到驱动器使能, 到输出为高电平	tDZH(SH DN)	图 4 和 6, CL=15pF, S2 关断			4500	纳秒
从芯片关断到驱动器使能, 到输出为低电平	tDZL(SH DN)	图 4 和 6, CL=15pF, S1 关断			4500	纳秒
从芯片关断到接收器使能, 到输出为高电平	tRZH(SH DN)	图 2 和 8, CL=100pF, S2 关断			3500	纳秒
从芯片关断到接收器使能, 到输出为低电平	tRZL(SH DN)	图 2 和 8, CL=100pF, S1 关断			3500	纳秒

注 3: 当 RE =1, DE=0 时, WS3088 进入关断状态。如果这个状态维持时间小于 50 纳秒,则芯片不会进入关断状态。如果这个状态维持时间超过 600 纳秒,芯片确保进入关断状态。

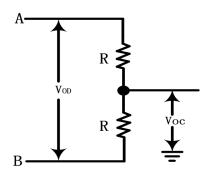


图 1 驱动器直流特性测试负载

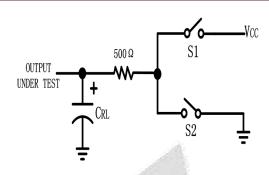


图 4 驱动器使能/关断 开关特性测试负载

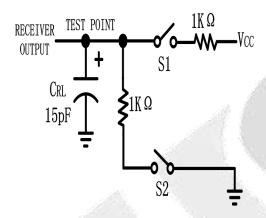


图 2 接收器使能/关断 开关特性测试负载

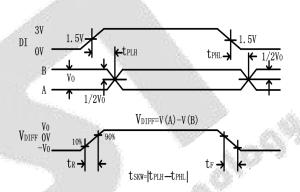


图 5 驱动器传输延时

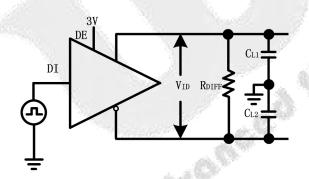


图 3 驱动器开关特性测试电路

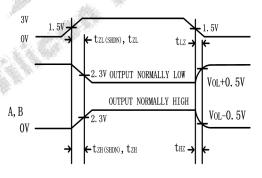


图 6 驱动器使能/关断时序

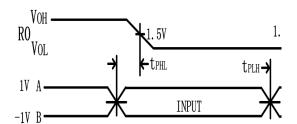


图 7 接收器传输延时

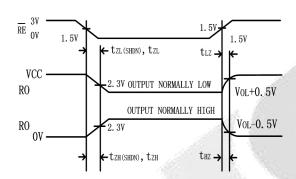


图 8 接收器使能/关断时序

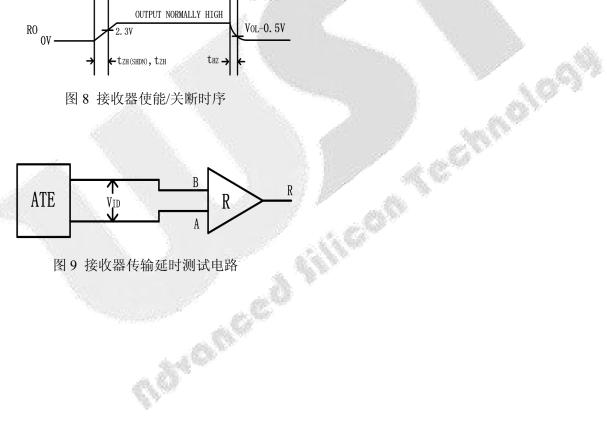
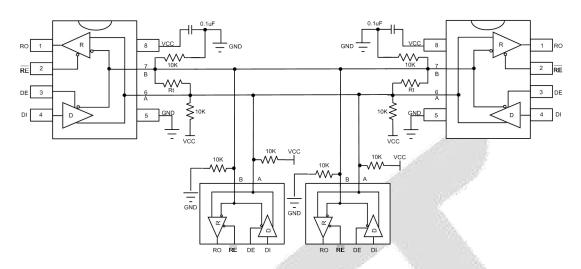


图 9 接收器传输延时测试电路

管脚功能描述

管脚	名称	功能
1	RO	接收器输出,接收器使能时,极性判断完成后,若 V(A)-V(B)>-50mV, RO 输出高电平;若
		V(A)-V(B)<-200mV,RO 输出低电平。
2	\overline{RE}	接收器输出使能, \overline{RE} 接低电平时 RO 输出有效; \overline{RE} 接高电平时,接收器关断。 \overline{RE} 为
		高电平, DE 为低电平,整个芯片处于关断状态。
3	DE	驱动器输出使能, DE 置为高电平时, 驱动器使能; DE 置为低电平时, 驱动器关断, 驱动
		器输出为高阻态。 \overline{RE} 为高电平, DE 为低电平,整个芯片处于关断状态。
4	DI	驱动器输入,DI 为低电平时强制同相输出为低电平,反相输出为高电平; DI 为高电平时强
		制同相输出为高电平,反相输出为低电平。
5	GND	地
6	A	总线接口,驱动器同相输出端,接收器同相输入端。
7	В	总线接口,驱动器反相输出端,接收器反相输入端。
8	Vcc	正电源,采用一只 0.1µF 电容旁路 V _{CC} 至 GND

真值表


			发射	
	输入	7	输出	4.07
\overline{RE}	DE	DI	В	A
X	1	1	0	1
X	1	0	1	0
0	0	X	高阻	高阻
1	0	X	关断	

	接收					
		I输入	输出			
\overline{RE}	DE	A-B	RO			
0	X	\geq -50 m V	1			
0	X	≤ -200mV	0			
1	1	X	高阻			
1	0	X	关断			

应用信息

Rt 为特征匹配阻抗,典型值为 120Ω

总线负载 256 个收发器

标准 RS-485 接收器的输入阻抗为 12KΩ (1个单位负载),标准驱动器可最多驱动 32个单位负载。WS3088 具有 1/8 单位负载的输入阻抗 (96KΩ),允许最多 256 个收发器挂接在同一总线上。这些器件可任意组合,或者与其他 RS485 收发器组合使用,只要总负载不超过 32 个单位负载即可挂接在同一总线。

低功耗关断模式

雇为高电平,DE为低电平,芯片进入低功耗关断模式。关断电流典型值为 1.8 微安。 RE 和 DE 可以同时驱动;如果 RE 为高电平,DE 为低电平保持时间小于 50 纳秒,芯片不会进入关断模式;如果保持时间超过600 纳秒,芯片会确保进入关断模式。

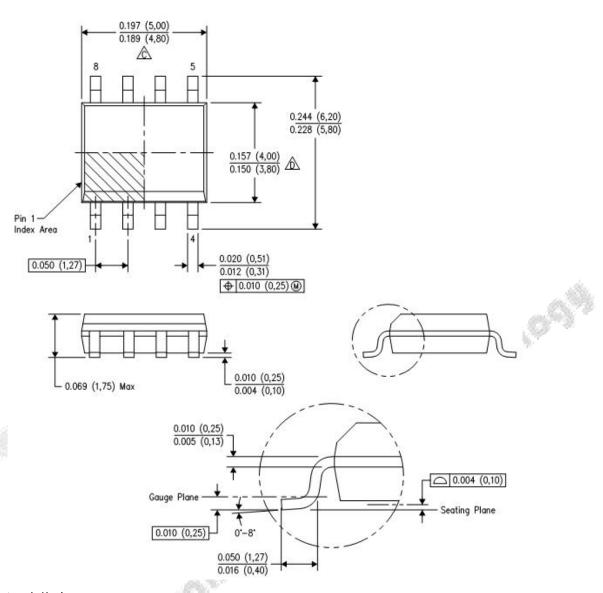
驱动器输出保护

两种机理实现过大电流和功耗过大保护。一个是过流保护电路,当正常驱动总线时,由于总线异常导致芯片电流过大时,芯片内部的过流保护电路起作用,来保证驱动电流不会超过一定条件下的设定值。另一个是过温保护,当芯片功耗太大,温度上升时,过温保护电路保证芯片不会损坏。如果芯片进入过温保护状态,驱动器输出为高阻态。

典型应用

WS3088 应用于双向数据通信的多点网络。图 10 给出了典型的应用网络。为了降低反射,应当在传输线的两端以其特性阻抗进行终端匹配,主干线以外的分支线路的长度应尽可能短。

护电路来防止人手触摸或者装配时的 ESD 事件对芯片造成损坏。驱动器的输出和接收器的输入管脚采用增强的 ESD 保护电路,这些管脚可以抵抗±15kV 的人体模式 ESD 冲击而不会损坏。所有 ESD 保护电路在正常工作时均处于关断状态,并不消耗电流。ESD 事件后,WS3088 可以保证正常工作,而不会出现闩锁或损坏情况。


ESD 保护性能测试方法有很多种。驱动器的输出和接收器的输入采用如下 ESD 测试方法来衡量 ESD 性能: 1) ±15kV 人体模型 2) ±12kV IEC61000-4-2 接触放电。

静电保护

WS3088 的所有管脚均具有静电泄放保

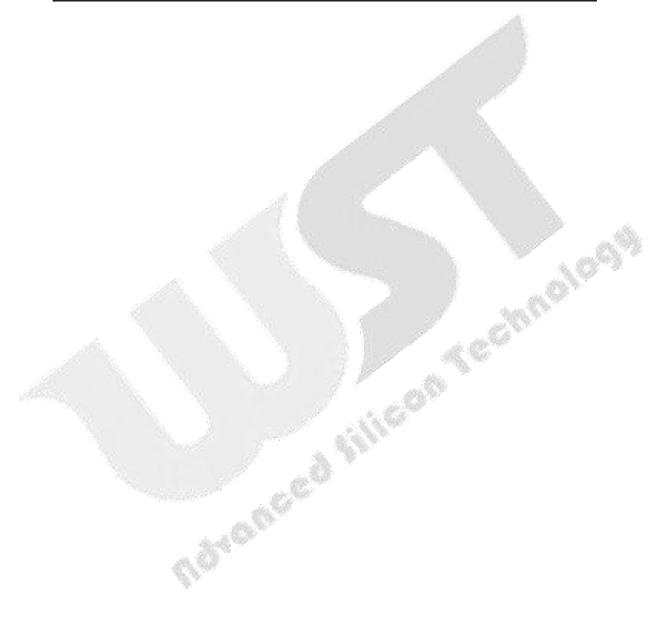
封装尺寸

订购信息

11

PART NUMBER	TEMP RANGE	Material	PKG TYPE	MOQ/T&R	MOQ/carton
WS3088EESA -GEC	-40°C ~125°C	Green	SOP8	1 reel=2,500/box	8 box=20,000/carton

WS3088 Rev1.1 www.gbdz.net


Prohibited © 2017 GEC All Rights Reserved

版本历史

日期	版本	描述			
2013年8月	1.0	产品发表;			
2021年1月	1.1	更改产品管脚最大耐压范围;			

